skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sarma, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 28, 2026
  2. Recent studies have shown that users of visual analytics tools can have difficulty distinguishing robust findings in the data from statistical noise, but the true extent of this problem is likely dependent on both the incentive structure motivating their decisions, and the ways that uncertainty and variability are (or are not) represented in visualisations. In this work, we perform a crowd-sourced study measuring decision-making quality in visual analytics, testing both an explicit structure of incentives designed to reward cautious decision-making as well as a variety of designs for communicating uncertainty. We find that, while participants are unable to perfectly control for false discoveries as well as idealised statistical models such as the Benjamini-Hochberg, certain forms of uncertainty visualisations can improve the quality of participants’ decisions and lead to fewer false discoveries than not correcting for multiple comparisons. We conclude with a call for researchers to further explore visual analytics decision quality under different decision-making contexts, and for designers to directly present uncertainty and reliability information to users of visual analytics tools. The supplementary materials are available at: https://osf.io/xtsfz/. 
    more » « less
  3. Machine Learning (ML) is increasingly gaining significance for end-user programmer (EUP) applications. However, machine learning end-user programmers (ML-EUPs) without the right background face a daunting learning curve and a heightened risk of mistakes and flaws in their models. In this work, we designed a conversational agent named “Newton” as an expert to support ML-EUPs. Newton’s design was shaped by a comprehensive review of existing literature, from which we identified six primary challenges faced by ML-EUPs and five strategies to assist them. To evaluate the efficacy of Newton’s design, we conducted a Wizard of Oz within-subjects study with 12 ML-EUPs. Our findings indicate that Newton effectively assisted ML-EUPs, addressing the challenges highlighted in the literature. We also proposed six design guidelines for future conversational agents, which can help other EUP applications and software engineering activities. 
    more » « less
  4. While open-source software has become ubiquitous, its sustainability is in question: without a constant supply of contributor effort, open-source projects are at risk. While prior work has extensively studied the motivations of open-source contributors in general, relatively little is known about how people choose which project to contribute to, beyond personal interest. This question is especially relevant in transparent social coding environments like GitHub, where visible cues on personal pro"le and repository pages, known as signals, are known to impact impression formation and decision making. In this paper, we report on a mixed-methods empirical study of the signals that influence the contributors’ decision to join a GitHub project. We first interviewed 15 GitHub contributors about their project evaluation processes and identified the important signals they used, including the structure of the README and the amount of recent activity. Then, we proceeded quantitatively to test out the impact of each signal based on the data of 9,977 GitHub projects. We reveal that many important pieces of information lack easily observable signals, and that some signals may be both attractive and unattractive. Our findings have direct implications for open-source maintainers and the design of social coding environments, e.g., features to be added to facilitate better project searching experience 
    more » « less